
Status update: Stack switching in Wasmtime

Frank Emrich
University of Edinburgh

Stack Switching Subgroup meeting
4 December 2023

Overview

→ Working implementation of typed continuations/WasmFX approach in fork of
Wasmtime

→ Current limitations
• Not implemented resume.throw yet (waiting for EH support in Wasmtime)
• Not implemented barrier yet (easy to implement once needed)
• No support for growing stacks or detecting stack overflow

→ Topics today:
• Feature work: Plans to overcome these limitations/refine some other aspects
• Optimisation work: Finished and planned performance optimisations

2

Feature work

Growing stacks/Preventing stack overflow

→ Current behaviour: Continuations created with fixed amount of stack space,
exceeding causes unmitigated disaster �

→ Plan: Investigate two different solutions
• Add stack checks to function preludes, trigger resize if needed

- Infrastructure in place in Wasmtime
- Downside: Affects code never performing stack switching
- Resizing approach: Segmented stacks or copying stack to larger allocation
(OCaml approach, need to ensure no pointers into stack)

• mmap large amounts of stack memory, committed only on first use, guard page
at bottom of stack

- Platform-specific implementations
- Approach taken by libmprompt
- Downside: Potentially makes allocation slower⇒ Use stack pools?

3

Deallocation of continuations

(func $leak
(cont.new $ct (ref.func $myfunc))
(drop)
;; continuation object (stack memory , etc) leaked here

)

→ Should call resume.throw on continuations not run to completion
→ Current behaviour: Only deallocate continuation’s memory when computation

returns
→ One solution to avoid memory leakage: Use refcounting to determine when

continuations become unreachable
→ Requires GC/refcounting infrastructure in Wasmtime

4

Detecting reuse of continuations: Current approach

...
(local.set $k1 (cont.new (ref.func $g)))
(block $handler (result (ref $ct2))

(resume $ct1 (tag $mytag) (local.get $k1)))
(return ...)

)
(local.set $k2) ;; $k2 : (ref $ct2) usable, $k1 : (ref $ct1) is not

Continuation values are pointers to pointers, null-ed on use

•$k1

•

$k2

•

ContinuationHandle

•

actual data (stack, ...)
Fiber

Downsides:
• Additional allocations per operation returning continuation
• Now we also need to ensure deallocation of the ContinuationHandle!

5

Detecting reuse of continuations: Current approach

...
(local.set $k1 (cont.new (ref.func $g)))
(block $handler (result (ref $ct2))

(resume $ct1 (tag $mytag) (local.get $k1)))
(return ...)

)
(local.set $k2) ;; $k2 : (ref $ct2) usable, $k1 : (ref $ct1) is not

Continuation values are pointers to pointers, null-ed on use

•$k1

•

$k2

•
ContinuationHandle

•

actual data (stack, ...)
Fiber

Downsides:
• Additional allocations per operation returning continuation
• Now we also need to ensure deallocation of the ContinuationHandle!

5

Detecting reuse of continuations: Current approach

...
(local.set $k1 (cont.new (ref.func $g)))
(block $handler (result (ref $ct2))

(resume $ct1 (tag $mytag) (local.get $k1)))
(return ...)

)
(local.set $k2) ;; $k2 : (ref $ct2) usable, $k1 : (ref $ct1) is not

Continuation values are pointers to pointers, null-ed on use

•$k1

•$k2

•

ContinuationHandle

•

actual data (stack, ...)
Fiber

Downsides:
• Additional allocations per operation returning continuation
• Now we also need to ensure deallocation of the ContinuationHandle!

5

Detecting reuse of continuations: Current approach

...
(local.set $k1 (cont.new (ref.func $g)))
(block $handler (result (ref $ct2))

(resume $ct1 (tag $mytag) (local.get $k1)))
(return ...)

)
(local.set $k2) ;; $k2 : (ref $ct2) usable, $k1 : (ref $ct1) is not

Continuation values are pointers to pointers, null-ed on use

•$k1

•$k2

•

ContinuationHandle

•

actual data (stack, ...)
Fiber

Downsides:
• Additional allocations per operation returning continuation
• Now we also need to ensure deallocation of the ContinuationHandle! 5

Detecting reuse of continuations: Unsafe approach

...
(local.set $k1 (cont.new (ref.func $g)))
(block $handler (result (ref $ct2))

(resume $ct1 (tag $mytag) (local.get $k1)))
(return ...)

)
(local.set $k2) ;; $k2 : (ref $ct2) usable, $k1 : (ref $ct1) is not

Unsafe: Continuation values are pointers to Fiber objects

•$k1

•

$k2

actual data (stack, ...)
Fiber

This behaviour can be enabled with flag

6

Detecting reuse of continuations: Unsafe approach

...
(local.set $k1 (cont.new (ref.func $g)))
(block $handler (result (ref $ct2))

(resume $ct1 (tag $mytag) (local.get $k1)))
(return ...)

)
(local.set $k2) ;; $k2 : (ref $ct2) usable, $k1 : (ref $ct1) is not

Unsafe: Continuation values are pointers to Fiber objects

•$k1

•

$k2

actual data (stack, ...)
Fiber

This behaviour can be enabled with flag

6

Detecting reuse of continuations: Unsafe approach

...
(local.set $k1 (cont.new (ref.func $g)))
(block $handler (result (ref $ct2))

(resume $ct1 (tag $mytag) (local.get $k1)))
(return ...)

)
(local.set $k2) ;; $k2 : (ref $ct2) usable, $k1 : (ref $ct1) is not

Unsafe: Continuation values are pointers to Fiber objects

•$k1

•$k2

actual data (stack, ...)
Fiber

This behaviour can be enabled with flag

6

Detecting reuse of continuations: Unsafe approach

...
(local.set $k1 (cont.new (ref.func $g)))
(block $handler (result (ref $ct2))

(resume $ct1 (tag $mytag) (local.get $k1)))
(return ...)

)
(local.set $k2) ;; $k2 : (ref $ct2) usable, $k1 : (ref $ct1) is not

Unsafe: Continuation values are pointers to Fiber objects

•$k1

•$k2

actual data (stack, ...)
Fiber

This behaviour can be enabled with flag
6

Detecting reuse of continuations: Planned approach

...
(local.set $k1 (cont.new (ref.func $g)))
(block $handler (result (ref $ct2))

(resume $ct1 (tag $mytag) (local.get $k1)))
(return ...)

)
(local.set $k2) ;; $k2 : (ref $ct2) usable, $k1 : (ref $ct1) is not

Continuation values are fat pointers: (sequence number, *Fiber)

seq: 0,
•$k1

seq: 1,
•

$k2

actual data (stack, ...), seq: 0

Fiber

On continuation use: Compare fat pointer’s seq with Fiber’s, increment latter

7

Detecting reuse of continuations: Planned approach

...
(local.set $k1 (cont.new (ref.func $g)))
(block $handler (result (ref $ct2))

(resume $ct1 (tag $mytag) (local.get $k1)))
(return ...)

)
(local.set $k2) ;; $k2 : (ref $ct2) usable, $k1 : (ref $ct1) is not

Continuation values are fat pointers: (sequence number, *Fiber)

seq: 0,
•$k1

seq: 1,
•

$k2

actual data (stack, ...), seq: 0

Fiber

On continuation use: Compare fat pointer’s seq with Fiber’s, increment latter

7

Detecting reuse of continuations: Planned approach

...
(local.set $k1 (cont.new (ref.func $g)))
(block $handler (result (ref $ct2))

(resume $ct1 (tag $mytag) (local.get $k1)))
(return ...)

)
(local.set $k2) ;; $k2 : (ref $ct2) usable, $k1 : (ref $ct1) is not

Continuation values are fat pointers: (sequence number, *Fiber)

seq: 0,
•$k1

seq: 1,
•$k2

actual data (stack, ...), seq: 1

Fiber

On continuation use: Compare fat pointer’s seq with Fiber’s, increment latter

7

Detecting reuse of continuations: Planned approach

...
(local.set $k1 (cont.new (ref.func $g)))
(block $handler (result (ref $ct2))

(resume $ct1 (tag $mytag) (local.get $k1)))
(return ...)

)
(local.set $k2) ;; $k2 : (ref $ct2) usable, $k1 : (ref $ct1) is not

Continuation values are fat pointers: (sequence number, *Fiber)

seq: 0,
•$k1

seq: 1,
•$k2

actual data (stack, ...), seq: 1

Fiber

On continuation use: Compare fat pointer’s seq with Fiber’s, increment latter
7

Optimisation work

Current implementation approach

→ We act at level of wasm→ Cranelift
intermediate format (CLIF) translation

→ Cranelift remains unchanged

→ Escape hatch: Libcalls allow executing
arbitrary Rust code

→ We added new libcalls to ...
• perform actual stack switching using
wasmtime-fiber

• perform allocation
• simplify implementation work

wasm

CLIF

assembly

libcalls
(wasmtime-fiber, ...)

Cranelift

our work
sits here

8

Current implementation approach

→ We act at level of wasm→ Cranelift
intermediate format (CLIF) translation

→ Cranelift remains unchanged

→ Escape hatch: Libcalls allow executing
arbitrary Rust code

→ We added new libcalls to ...
• perform actual stack switching using
wasmtime-fiber

• perform allocation
• simplify implementation work

wasm

CLIF

assembly

libcalls
(wasmtime-fiber, ...)

Cranelift

our work
sits here

8

Libcall infrastructure

Multiple layers of indirection for each libcall. Invoking foo libcalls involves:

→ From jitted code: Call libcalls::trampolines::foo
(4 instructions of macro-generated trampoline code, storing PC and FP)

→ From there: jmp to libcalls::trampolines::impl_foo
let result = std::panic::catch_unwind(

std::panic::AssertUnwindSafe(|| {
... libcalls::foo(...) ...

}));
match result {

Ok(ret) => LibcallResult::convert(ret),
Err(panic) => crate::traphandlers::resume_panic(panic)

}

→ From there: Call libcalls::foo (actual implementation of foo)
9

wasmtime-fiber

→ Standalone Rust implementation of general-purpose stack switching

→ Developed as part of Wasmtime, but independent from it

→ Key part: Function wasmtime_fiber_switch (handwritten assembly) allows
switching between stacks

• Push all callee-save registers on current stack
• Set current SP aside
• Obtain new stack pointer and set SP to it
• Restore callee-save registers from (now switched) stack
• Return

→ Start of execution: wasmtime_fiber_switch into new, carefully prepared stack,
proceed into actual function to run through 2 trampolines

10

Payload handling

→ When starting, suspending, resuming continuations we can pass arbitrary payload
data
...
(resume $ct (local.get $myarg) (cont.new (ref.func $f))))
...
(suspend $mytag (i32.const 123) (i32.const 456))
...

→ Current, naive approach: All payload data passed via heap-allocated buffers

→ For each wasm function $f: Wasmtime provides “array call” trampoline
• Consistent signature, independent from $f’s: Takes buffer and length
• Reads arguments from buffer and calls $f

11

Overhead galore
(func $f (resume $ct (cont.new (ref.func $g))))

wf::wasmtime_fiber_switch
libcalls::resume

std::panic::catch_unwind

trampolines::impl_resume

trampolines::resume

$f

$g

array_call_host2wasm_trampoline_$g

std::panic::catch_unwind

wf::execute
wf::fiber_start

wf::wasmtime_fiber_start

parent

→ Disclaimer: Logical, slightly edited view.
Some of these are tail calls, don’t actually
occupy stack space, may be inlined, etc

→ This is not criticising Wasmtime at all: All
these components (libcall infrastructure,
wasmtime-fiber, array call mechanism)
are well engineered!

→ Many of these components are more
general than what we need

12

Overhead galore
(func $f (resume $ct (cont.new (ref.func $g))))

wf::wasmtime_fiber_switch
libcalls::resume

std::panic::catch_unwind

trampolines::impl_resume

trampolines::resume

$f

$g

array_call_host2wasm_trampoline_$g

std::panic::catch_unwind

wf::execute
wf::fiber_start

wf::wasmtime_fiber_start

parent

→ Disclaimer: Logical, slightly edited view.
Some of these are tail calls, don’t actually
occupy stack space, may be inlined, etc

→ This is not criticising Wasmtime at all: All
these components (libcall infrastructure,
wasmtime-fiber, array call mechanism)
are well engineered!

→ Many of these components are more
general than what we need

12

Overhead galore
(func $f (resume $ct (cont.new (ref.func $g))))

wf::wasmtime_fiber_switch
libcalls::resume

std::panic::catch_unwind

trampolines::impl_resume

trampolines::resume

$f

$g

array_call_host2wasm_trampoline_$g

std::panic::catch_unwind

wf::execute
wf::fiber_start

wf::wasmtime_fiber_start

parent

→ Disclaimer: Logical, slightly edited view.
Some of these are tail calls, don’t actually
occupy stack space, may be inlined, etc

→ This is not criticising Wasmtime at all: All
these components (libcall infrastructure,
wasmtime-fiber, array call mechanism)
are well engineered!

→ Many of these components are more
general than what we need

12

Optimisation roadmap

→ Starting position: Architectural decisions based on need to get research prototype
built by small team

→ Short-term: Squeeze more performance out of current approach (use libcalls +
wasmtime-fiber, but customise further)

→ Medium-term: Gradually switch towards internalising stack switching into Cranelift

→ Approach: Incremental improvement instead of big leap

13

Finished/In-progress optimisations

Done
→ Stop using libcalls for purposes other than stack switching or allocation

• Translated Rust code to CLIF
→ Optimised layout of data structures (inline data, remove unused fields)
→ Re-use allocated payload buffers when possible

In progress
→ Stop using mechanism provided by wasmtime-fiber to pass payloads

altogether
• Currently only used to pass info about return vs suspend-with-tag from
suspend to handler

• Transferred via heap indirection
• Now: passed through register argument of wasmtime_fiber_switch

14

Planned optimisations (short-term)
Libcalls

• Call into Rust code (wasmtime-fiber, allocation) more efficiently
• Ideally want to emit direct call to wasmtime_fiber_switch
• ... let’s see how that goes (panics, backtraces, etc)

wasmtime-fiber
• Specialise to our needs (no need to be able to invoke arbitrary closures, ...)

Payload passing
• When possible, pass all payloads through arguments/return values of
wasmtime_fiber_switch, otherwise fall back to using buffers

Memory management
• Where payload buffers still needed, stack-allocate whenever possible
• Pool stack memory allocations (meaningful impact in OCaml!)

15

Benchmark results

Setup
• x64 Linux (AMD Ryzen 3900X)
• WASI SDK 20

Relative performance improvement
Benchmark

c10m sieve skynet state
WasmFX @ September 1.00 1.00 1.00 1.00
WasmFX @ Now 0.81 0.64 0.82 0.64

16

Other ongoing efforts
Binaryen support

• Implemented basic support for WasmFX instructions in Binaryen
• Pleasantly accessible code base!
• Main motivation: wasm-merge. Link generated and hand-written wasm into

single module for benchmarking

extern
__wasm_import("impl", "switch_func")
int32_t switch_func(void);

void do_stuff() { ... }

my_benchmark.c
(func (export "switch_func") ...)

switch.wat

(import "impl" "switch_func" ...)
(func (export "do_stuff") ...)

my_benchmark.wasm

(func $switch_func ...)
(func $do_stuff ...)

merged.wasm

clang wasm-merge

• No particular focus on wasm-opt optimisations for now
• Currently being upstreamed 17

Other ongoing efforts (cont'd)

Benchmarking
• Ongoing work to create additional benchmarks
• Using C + handwritten .wat approach using wasm-merge
• Notable example: Webserver

TinyGo
• Offers (subset of) Go→ wasm compilation
• Goroutines currently handled using asyncify
• Our fork: Emit WasmFX instructions instead

18

WasmFX resource list

→ Formal specification
(https://github.com/wasmfx/specfx/blob/main/proposals/continuations/
Overview.md)

→ Informal explainer document
(https://github.com/wasmfx/specfx/blob/main/proposals/continuations/
Explainer.md)

→ Reference implementation (https://github.com/wasmfx/specfx)
→ Research prototype implementation in Wasmtime

(https://github.com/wasmfx/wasmfxtime)
→ OOPSLA’23 research paper (https://doi.org/10.48550/arXiv.2308.08347)

https://wasmfx.dev

19

https://github.com/wasmfx/specfx/blob/main/proposals/continuations/Overview.md
https://github.com/wasmfx/specfx/blob/main/proposals/continuations/Overview.md
https://github.com/wasmfx/specfx/blob/main/proposals/continuations/Explainer.md
https://github.com/wasmfx/specfx/blob/main/proposals/continuations/Explainer.md
https://github.com/wasmfx/specfx
https://github.com/wasmfx/wasmfxtime
https://doi.org/10.48550/arXiv.2308.08347
https://wasmfx.dev

